新規登録

ログイン

Ontology-Based Topic Detection

FREEMIUM
開発者 Proxem
更新日 1ヶ月前
データ
-/10
人気度
-
レイテンシ
-
正常稼働率

Ontology-Based Topic Detection API Documentation

特許を取得したNLP技術により最も関連性の高いWikipediaのカテゴリを抽出することにより、テキストが何であるかを調べるテキスト分析サービス

全文を表示する

さらに魅力的なアプリ開発を

世界最大級のAPIマーケットプレイスで、8,000以上の豊富なラインナップからAPIを検索、簡単に接続しましょう
POSTGet categories
POSTGet corpus categories
POSTGet categories

指定されたテキストに関連付けられた上位のテーマを返します。

FreemiumこのAPIには有料プランと一定量まで無料で利用可能なプランがあります。Rakuten RapidAPIでお好みのプランに登録しましょう。
ログインしてこのエンドポイントをテストする
ログイン
ヘッダーパラメータ
X-RapidAPI-KeySTRING
REQUIRED
AcceptSTRING
OPTIONALThe expected type of the response
必須パラメータ
Document
REQUIREDThe document to analyze
パラメータ(Option)
nbtopcatNUMBER
OPTIONALThe max numbers of expected categories (max 50)
cleanupBOOLEAN
OPTIONALTry to remove the less useful categories (default to true)
srclangSTRING
OPTIONALSet the language of the given document (prevent the auto-detection)
edgesBOOLEAN
OPTIONALSet to true to receive parent/child relations between categories
コードスニペット
unirest.post("https://proxem-thematization.p.rapidapi.com/api/wikiAnnotator/GetCategories?nbtopcat=undefined&cleanup=undefined&srclang=undefined&edges=undefined")
.header("X-RapidAPI-Key", "undefined")
.header("Accept", "undefined")
.header("Content-Type", "text/plain")
.send("At Proxem, our clients ask us to extract information from e-mails, social medias, press articles, and basically any type of text you can imagine. In the standard case, the text to process is written in various languages. To establish systems that support a wide scale of languages and formats is one of the mission of our Research team.Another goal of ours is to develop cross-lingual algorithms, that is algorithms which take as input texts in different languages and output an information computed on all those texts. For example on a task called sentiment analysis, which consists in detecting the \"polarity\" of a document (\"is this document rather positive or negative?\"), we want to implement a unique algorithm that would take as input sentences in English, Chinese, Spanish, etc and would compute a score. There are multiple reasons for us to aim at this. One is for simplicity sake. Indeed, we do not want to implement as many algorithms as languages we may have to handle. Another reason for that choice is that we want to leverage the important amount of available data for some languages to improve the accuracy on languages where data is rare.")
.end(function (result) {
  console.log(result.status, result.headers, result.body);
});
サンプルレスポンス

loading...

ログイン新規登録

SDKをインストール(NodeJS)

インストール

Node.jsでUnirestを使用するには、NPMモジュールをインストールしてください。

$ npm install unirest

インストール完了後は、簡単にリクエストを行うことができるようになります。

var unirest = require('unirest');

リクエスト

unirest.post("https://proxem-thematization.p.rapidapi.com/api/wikiAnnotator/GetCategories?nbtopcat=undefined&cleanup=undefined&srclang=undefined&edges=undefined")
.header("X-RapidAPI-Key", "undefined")
.header("Accept", "undefined")
.header("Content-Type", "text/plain")
.send("At Proxem, our clients ask us to extract information from e-mails, social medias, press articles, and basically any type of text you can imagine. In the standard case, the text to process is written in various languages. To establish systems that support a wide scale of languages and formats is one of the mission of our Research team.Another goal of ours is to develop cross-lingual algorithms, that is algorithms which take as input texts in different languages and output an information computed on all those texts. For example on a task called sentiment analysis, which consists in detecting the \"polarity\" of a document (\"is this document rather positive or negative?\"), we want to implement a unique algorithm that would take as input sentences in English, Chinese, Spanish, etc and would compute a score. There are multiple reasons for us to aim at this. One is for simplicity sake. Indeed, we do not want to implement as many algorithms as languages we may have to handle. Another reason for that choice is that we want to leverage the important amount of available data for some languages to improve the accuracy on languages where data is rare.")
.end(function (result) {
  console.log(result.status, result.headers, result.body);
});
OAuth2認証
クライアントID
クライアントシークレット
OAuth2認証

エンドポイントをテストするには

登録(無料)が必要です

世界最大級のAPIマーケットプレイスに参加しましょう。8,000以上の豊富なラインナップから検索、簡単に接続でき、50万人以上の開発者にご利用いただいています。
APIを検索
ブラウザ上で即座にテスト
接続用スニペットの自動生成
ダッシュボードで一括管理